Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE

NUMBER

\square CANDIDATE NUMBER \square

CHEMISTRY

9701/35
Paper 3 Advanced Practical Skills 1
October/November 2022
2 hours
You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40 .
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 16 pages. Any blank pages are indicated.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 Group 1 elements form salts with ethanedioic acid. These salts are ethanedioates and have the formula $(\mathrm{COOM})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, where \mathbf{M} is the Group 1 metal.

Ethanedioate ions react with manganate(VII) ions as shown.

$$
5\left(\mathrm{COO}^{-}\right)_{2}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

You will determine which metal is present in $(\mathrm{COOM})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ by titrating a solution of this salt with manganate(VII) ions.

FA 1 is $10.14 \mathrm{~g} \mathrm{dm}^{-3}$ aqueous hydrated ethanedioate of metal $\mathbf{M},(\mathrm{COOM})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
FA 2 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 3 is $1 \mathrm{moldm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

(a) Method

- Fill the burette with FA 2.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
- Use the measuring cylinder to add approximately $20 \mathrm{~cm}^{3}$ of FA 3 into the conical flask.
- Place the conical flask on a tripod and gauze and heat carefully until the temperature of the solution is approximately $70^{\circ} \mathrm{C}$.
- Remove the flame.
- Carefully lift the hot conical flask and place it on the white tile under the burette.
- During titrations, add FA 2, slowly at first, until a permanent pale pink colour is formed. The pink colour on initial addition may take several seconds to disappear.
- If the reaction mixture turns brown, reheat it to about $70^{\circ} \mathrm{C}$. If the brown colour disappears, continue with the titration. If the brown colour remains, discard the contents of the flask and begin a new titration.
- Perform a rough titration with FA 2. Record your burette readings in the space below.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all your burette readings and the volume of FA 2 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, calculate a suitable mean value to be used in your calculations.
Show clearly how you obtained this value.
$25.0 \mathrm{~cm}^{3}$ of FA 1 required \qquad cm^{3} of FA 2. [1]
(c) Calculations
(i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to the appropriate number of significant figures.
(ii) Calculate the amount, in mol, of manganate(VII) ions, $\mathrm{MnO}_{4}{ }^{-}$, in the volume of FA 2 calculated in (b).
amount of $\mathrm{MnO}_{4}^{-}=$ \qquad mol [1]
(iii) Calculate the amount, in mol, of ethanedioate ions that reacted with the manganate(VII) ions in (c)(ii).
amount of $\left(\mathrm{COO}^{-}\right)_{2}=$ mol

Hence calculate the concentration, in moldm^{-3}, of ethanedioate ions in FA 1.
concentration of $\left(\mathrm{COO}^{-}\right)_{2}=$ \qquad moldm ${ }^{-3}$
(iv) Calculate the relative formula mass, M_{r}, of the hydrated ethanedioate, $(\mathrm{COOM})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

$$
\begin{equation*}
M_{\mathrm{r}}= \tag{1}
\end{equation*}
$$

(v) Identify M. Show your working.

M is
(d) Explain why it is necessary to add FA 3 in each titration.
\qquad
\qquad

Question 2 starts on the next page.

2 Hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, can lose its water of crystallisation to form anhydrous copper(II) sulfate.

The enthalpy change for the dehydration of hydrated copper(II) sulfate is shown in the equation.

$$
\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

You will carry out experiments to determine the enthalpy changes for the solution of hydrated and anhydrous copper(II) sulfate and then use Hess's law to determine the enthalpy change of dehydration.

FA 4 is hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
FA 5 is anhydrous copper(II) sulfate, CuSO_{4}.
(a) Determination of the enthalpy change of solution of hydrated copper(II) sulfate.

Method

- Weigh the container with FA 4. Record the mass.
- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $25.0 \mathrm{~cm}^{3}$ of distilled water into the cup.
- Measure and record the temperature of the water.
- Tip all the FA 4 into the water and stir until the solid dissolves.
- Measure and record the lowest temperature reached.
- Rinse and dry the cup ready for the next experiment.
- Weigh the container with any residual FA 4. Record the mass.
- Calculate and record the change in temperature.
- Calculate and record the mass of FA 4 used.

Results

(b) Calculations
(i) Calculate the energy change during this reaction.
energy change $=$
(ii) Calculate the amount, in mol, of hydrated copper(II) sulfate, FA 4, used in the experiment. Show your working.
amount of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=$
mol [1]
(iii) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, when 1.00 mol of hydrated copper(II) sulfate dissolves in water. This is the enthalpy of solution.
\qquad kJmol^{-1} [1]
sign value
(c) Determination of the enthalpy change of solution of anhydrous copper(II) sulfate.

Method

- Weigh the container with FA 5. Record the mass.
- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $25.0 \mathrm{~cm}^{3}$ of distilled water into the cup.
- Measure and record the temperature of the water.
- Tip all the FA 5 into the water and stir until the solid dissolves.
- Measure and record the highest temperature reached.
- Weigh the container with any residual FA 5. Record the mass.
- Calculate and record the change in temperature.
- Calculate and record the mass of FA 5 used.

Results

(d) Calculations

(i) Calculate the enthalpy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the enthalpy change of solution of anhydrous copper(II) sulfate.
enthalpy change $=$ \square $\mathrm{kJ} \mathrm{mol}^{-1}$
sign
value
(ii) Use the enthalpy changes calculated in (b)(iii) and (d)(i) to calculate the enthalpy change of dehydration of hydrated copper(II) sulfate.

$$
\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Show clearly how you obtained your answer.
enthalpy change =
\qquad
(e) In the experiments in (a) and (c) you used the same method to determine the enthalpy change of solution of two solids.

Tick the box to indicate which statement is correct. Ignore the effect of differences in mass used.

The percentage error in (b)(iii) is less than the percentage error in (d)(i).	
The percentage errors in (b)(iii) and (d)(i) are equal.	
The percentage error in (b)(iii) is greater than the percentage error in (d)(i).	

Explain your choice.
\qquad
\qquad

Qualitative analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.

3 (a) FA 6 is an aqueous solution that contains one cation and two anions. The three ions are listed in the Qualitative analysis notes.
(i) Carry out the following tests on FA 6 and record your observations.

test	observations
Test 1 To a 1 cm depth of FA 6 in a boiling tube add aqueous sodium hydroxide, then	
heat gently.	
Test 2 To a 1 cm depth of FA 6 in a boiling tube add a 1 cm depth of aqueous sodium hydroxide and a piece of aluminium foil. Heat gently.	
Test 3 To a 1 cm depth of FA 6 in a test-tube add a few drops of hydrogen peroxide.	

(ii) From your observations suggest two possible identities for the cation in FA 6. possible cations: and
(iii) Suggest a test that would allow you to determine which of the cations you suggested in (a)(ii) is present in FA 6.

Carry out this test, record the result and hence identify the cation in FA 6.
test \qquad
result \qquad
The cation present is \qquad
(iv) From your observations in (a)(i) suggest two anions that could be present in FA 6 and give their formulae.
possible anions: or
(v) Suggest an additional test that could be carried out to confirm the presence of one of the anions you suggested in (a)(iv).

Carry out this test, record the result and hence state the identity of the anion.
test \qquad
result \qquad
The anion present is \qquad .
(b) Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat to approximately $80^{\circ} \mathrm{C}$. Turn off the Bunsen burner. This will be your hot water bath.

FA 7 is an organic compound with an M_{r} between 40-57.
(i) Carry out Test 2 and Test 3 on FA 7 and record your observations. The result for Test 1 is shown in the table.

test	
Test 1 Add a small piece of sodium.	
Test 2 To a 0.5 cm depth of aqueous iodine in a test-tube add aqueous sodium hydroxide dropwise until the yellow colour just disappears. Then add a few drops of FA 7 and shake the test-tube. If no change is seen, warm the test-tube in your hot water bath.	
Test 3 To a 1 cm depth of FA 7 in a test-tube add a few drops of acidified potassium manganate(VII). Warm the test-tube in your hot water bath.	

(ii) Using the observations in (b)(i) suggest what can be deduced from each test about the functional groups present in FA 7.

Test 1
Test 2 \qquad
Test 3 \qquad
(iii) Use your deductions in (b)(ii) to suggest the identity of FA 7.

FA 7 is \qquad

BLANK PAGE

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)$

The Periodic Table of Elements

	$\stackrel{\infty}{\sim}$					岕 \times ¢	® 두니ํ	
	$\stackrel{\rightharpoonup}{*}$		のレ			®ット		
	\bullet		$\infty \bigcirc ⿳ 亠 丷 厂 彡$					
	$\stackrel{6}{\square}$		$\wedge \boldsymbol{Z}$ 耪号号	$\stackrel{\sim}{\sim}$			毋 ¢ ¢ 镸	
	\pm		－$\bigcirc \stackrel{\text { ¢ }}{\text { ¢ }}$			is ¢ ¢ $\stackrel{\substack{\infty \\ \sim}}{ }$		
	$\stackrel{\sim}{\square}$		$\bigcirc \sim \sim$	$\mathfrak{C l}$				을 气言
				$\stackrel{\sim}{\sim}$				
				F				표
				の			スも镸管	
				∞				
				\wedge		\％○－豪，		
				\bullet	İ \sim ¢	和		
				\llcorner		于 은 흘웅	～ロ	员 음 長
				－				
				m				
	\sim		$+\underset{\infty}{\infty}$					® ¢ ¢［
	－							

	®－
	$\stackrel{\sim}{\circ}$
	$\bar{\square}$
	ロッ
	®
	的㐫蒠
	®U旨
	ヵ安蒠
	¢ ${ }_{\text {¢ }}$
$\bar{\circ} \mathrm{E}$	$\circledast \frac{2}{z}$
	ゥ的亳
in co	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

